

NDSU NORTH DAKOTA STATE UNIVERSITY

RANKED IN THE TOP CATEGORY BY THE CARNEGIE COMMISSION ON HIGHER EDUCATION

Soy Based Dust Control Agent

Update on scale up and field trials James A. Bahr Jan 28, 2021

Overview

- Brief History of the Development
- Field Testing 2020
- Expanded Markets
- Manufacturing and Distribution
- Future Plans for RAP Treatments

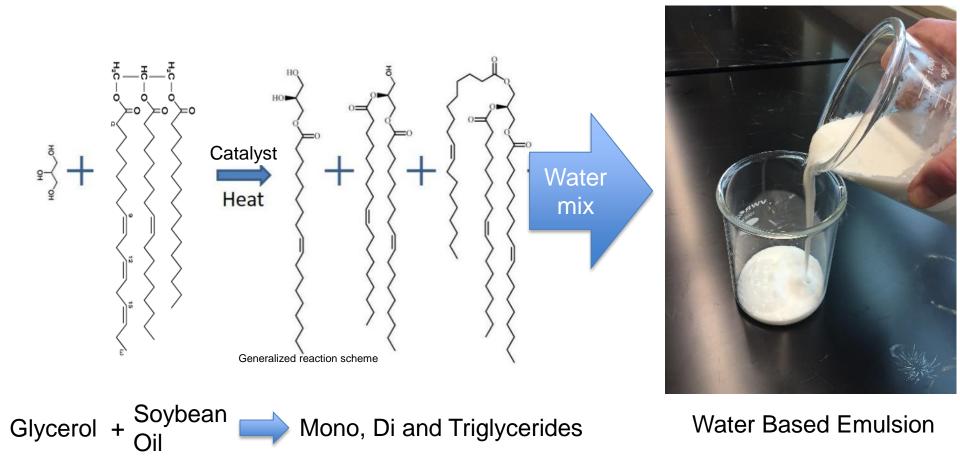
Development at NDSU 6 years in the making..

Scale Up to 50+ Totes

Field Trial

20 More Field Trials

Adjustments



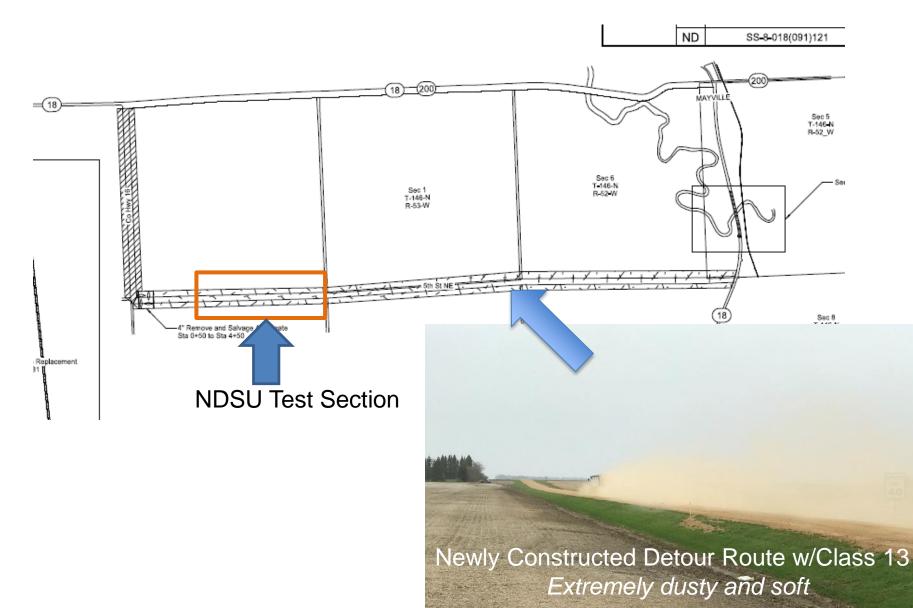
Commercialization

2021

Material Description

Goal: Create new uses for Ag-Based products while offering an alternative to chlorides for dust control

Scale Up in 2020 Produced 55+ Totes at ADM in Decatur II.


2020 Test Sites

Road Test Sites									
Test #	Date	Road Test Location	Site Description	Applicator	Rate	Dilution	Length		
1	19-May	Sioux City, IA	Hard surface with chloride residue	Marx Dist.	0.4 gal/yd ²	3 to 1	1,000 ft		
2	12-Jun	Mayville, ND	New gravel construction	Glacier	0.2 - 0.6 gal/yd ²	7 to 1	3,300 ft		
3	15-Jun	Woodbury County, IA	Park road	Marx Dist.	0.4 gal/yd ²	7 to 1	600 ft		
4	15-Jun	Woodbury County, IA	County road	Marx Dist.	0.4 gal/yd ²	7 to 1	600 ft		
5	24-Jun	Jamestown, ND	Township road	Allied Ag	0.4 gal/yd ²	7 to 1	1,300 ft		
6	13-Jul	Jamestown, ND	Township road	Allied Ag	0.4 gal/yd ²	7 to 1	600 ft		
7	16-Jul	Sioux City, IA	Adjacent to lignin and chloride	Marx Dist.	0.4 gal/yd ²	7 to 1	1,000 ft		
8	2-Sep	Walsh County, ND	Township road	Property owner	0.35 gal/yd ²	3 to 1	625 ft		
9	15-Sep	Mayville, ND	New gravel construction	Jim Bahr	$0.6 - 0.8 \text{ gal/yd}^2$	3 to 1	50 ft		
10	29-Sep	Woodbury County, IA	Some residual chloride	Marx Dist.	0.4 gal/yd ²	3 to 1	1,200 ft		
11	30-Sep	Kittson County, MN	Township road	Property owner	0.34 gal/yd ²	3 to 1	750 ft		
12	6-Oct	Jamestown, ND	Township road	Allied Ag	0.45 gal/yd ²	3 to 1	1,200 ft		
Non Roa	d Sites								
1	25-Sep	Limestone quarry, Wichita, KS	Weigh Station -	Summit Materials	.30 gal/yd2	3 to 1	2 x 600'		
2	25-Aug	Riding arena, Arizona	2-3 inches of mason sand	Performance Footing		3 to 1	5 gal		
3	5-Aug	Eldorado Mine Quebec	Underground Mine Shaft	Interlube	.15 gal/yd2	3 to 1			
4	7-Nov	Fertilizer plant, Beulah, ND	Urea production	DGC	1LBper/1000 ton	3 to 1	1800 gal		
5	30-Sep	Minto, ND	Parking Lot/Road to Fert. Plant	Minto Ag	.15 gal/yd ²	3 to 1	N/A		
6	TBD	Minto, ND	Parking Lot/Road to Fert. Plant	Minto Ag	.75 gal/yd ³	3 to 1	1000 ft		
7	7-Nov	Goldex Mine Quebec	Underground Mine Shaft	Interlube		3 to 1			

2020 Test Sites

Mayville Detour Test Site

Plan for the Mayville Test Site Dust Control Test

Make 3 passes at the rate of 0.2 gal/yd2

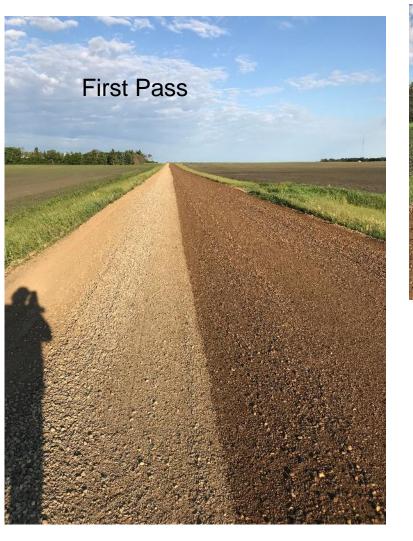
Each pass partially overlaps the previous section resulting in 3 levels of application rate.

One lane will be applied at a time with traffic diverted.

This process will then be repeated for the East bound lane.

Preload your tanker with 2,000 gallons of water

Load 2,000 gallons of material from NDSU (8 totes)


Third Pass 0.2 gal/yd2 13 ft x 1,100 ft

Second Pass 0.2 gal/yd2 13 ft x 2,200 ft

First Pass 0.2 gal/yd2 13 ft x 3,300 ft

Intersection

Diverted Traffic with flagger

Problems with this site

Day 1- Application day seemed to go well and according to plan.

Day 2- The applicator found a significant amount of material as a stiff foam still in the tanker that did not get applied to the road.

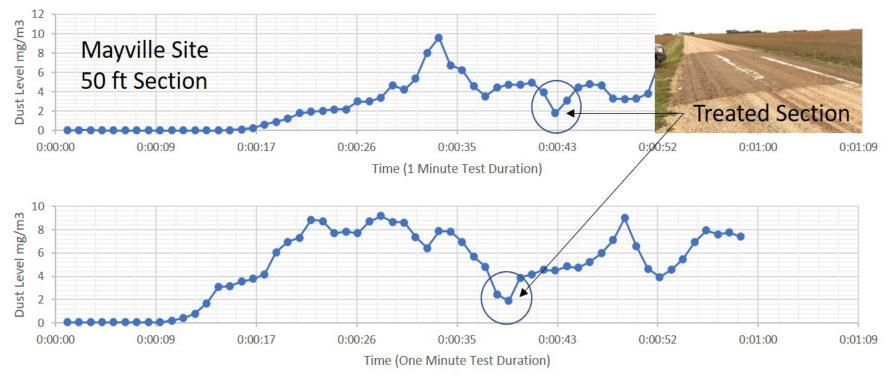
Day 4- Road dust levels were already rising.

We believe that when the bulk material was diluted, a separation occurred resulting in a foam that could not be sprayed.

This meant that the material we applied on Day 1 was too thin and mostly water resulting in the short term dust control.

r	Section 2010 Transportation Size DISTRIBUTION Size DISTRIBUTION														ON																											
No De	rth I part	ment	ta t of	Tran	sport	atic		BISI	MAF	CK,	ND	58	504	ł																												
PF	OUE	ст	NUN	IBE	R <u>Tre</u>	eat	ed s	i lioi	rese	arch	1										_	LO	СA	ТК	DN .	С	oun	ty														
PC	:N _																			0.15	_																					
	1			0.8	SIEV 6	4	3	2	1.5	1	HES 3/4	1/2	3/8	' 3 11		f		810	1.S. 1 14	16	20	30	40) 5		1	100 1	40:	200		_	_	_	HYD				·	_		_	
		95			'				Ľ	1		<u>'</u>	Ľ	Ľ		ľ		'	'	'	ľ	Ш			'		<u>'</u>	1		Ш						Ш	Ш					
											X.																															
		90						Π			ľ		I	Π		T						Π				T		T		Π	T	Τ	T			Π	Π					
	1	85	Ħ			T		Ħ	t	t	1	V	Ħ	IT		t	t	1			Ħ	Ħ	-			t		╢	1	Ħ	t	t	+		╢	Ħ	Ħ	t	T			
	4	80		-		╢		Ħ	+	\mathbf{T}	-	#	Ħ	╟		$^{+}$	t				₩	╫				t		╫	-	Ħ	$^{+}$	t	╈		╫	╫	Ħ	+	+	+		
	1	75	+	_		╢		╫	+	+	Ē	-#	ł	╟		+	╈	+		_	╫	╟	1			╀		╢	-	Η	+	╀	+		╢	╟	Η	+	┢	+	┥	
	i	70	+	_		╢		╢	+	-	-	1	÷.	╟		+	+	+		_	\parallel	╢				╞		╢		╢	+	╀	+		╢	⋕		+	-	+	_	
	(85				_		Ш	+				N	A		+		_			Щ	Щ	-			╞		#		Ц	+	1	4		#	Щ	Щ	+		_		
PERCENT FINER BY WEIGHT		60									-			\square	N							Ш						\parallel		Ш						Ш						
ME											i				Y	K																										
N N		55 -						Ħ			-		II	Π		X	X					IT				T		T		Π	T	T	T		1	IT	Ħ					
INE:		50				T		Ħ	t	T	1		Ħ	IT		Ť	X	¥	į		Ħ	Ħ				t		Ħ	1	Ħ	t	t	t		╢	Ħ	Ħ	t	T			
L		45	H	_		╢		₩	+	+	:		₩	╟		+	P	4	7		₩	╫	-			┢		╢	-	H	+	╈	+		╫	╫	H	+	+	+	┥	
ERCE		40	\square	_		╢	1	₩	+	\vdash	-		₩	╟		+	+	Ŧ	6		╢	╢	-			╀		╢	1	₩	+	+	+		╢	╢	₩	+	+	+	-	
ä		35	\square					Щ	+		-		Ш	\parallel		+	+	-)		ľ	H				╞		#	-	Н	+	╀	+		╢	⋕	Щ	+		-	_	
		30						Ш			-		Ш	Ш		1					N		V.					#		Ш			\downarrow		#	Щ	Щ					
		25									i			Ш							Γ	N		\backslash						Ш						Ш	Ц					
											-												Ì		\backslash																	
		20						Π			-		Π	Π		Τ					Π	Π				Ν		T		Π	T	Τ			T	Π	Π					
		15	Π			╢		Ħ	\uparrow	\square			Ħ	IT		t	t				Ħ	Ħ					$\overline{)}$	1		Ħ	t	t	╈		╢	Ħ	Ħ	\uparrow	T			
		10	+	-		╢		╫	+		-		₩	╟		+	+	+		-	╫	╫	-			┢		∜		╣		+	+		╫	╫	Η	+	+	+	-	
Ē		5	+	_		╢		╢	+	\vdash	-		₩	╟		+	╀	+		_	╢	╢				╀		╢	P	H			10-		₩		Ц				_	
		0				100					1									_	Ш		1				_	0.1	ì	Ш	-	Γ	•	•	0.01	¢	H	÷	-	-	0.00	11
2							1										G	RAI	IN S	SIZE	E IN	M	ш	ME	Т	RS		a. 1													2.01	
		Г				_	Т			GR	GRAIN SIZE										SAND																					
		L	С	OB	BLE	s		C	oars	_		_	ine	•		00	arsi	2		me	diur	n				fin	e		SILT OF							۲C						
	BOREHOLE DEPTH											AASHTO Classification								n	T		U	sc		_	ass		ati	on			L	-	PL		T	PI	_	Сс	_	Cu
•	-	1 0.0							+	A-1-a (0) A-1-a (0)									SP-SM SP-SM									+	NP NP NP NP		_	NP		_			53.40					
H	2		0.0							+			_	A-'	1-8	1 (0)				+					91	-51	Vİ				+	N	۲	Ň	P	+	NF	-	0.56		72.38
										+											+											+					+		\neg		+	
																											1					t										
	BOREHOLE DEPTH						ł	D100							-	030	_	Ţ	D10			Gra			avel %Sa			_			-	%Silt		%0		lay						
•	•				+					_	5.545 0.7			_	_	+	0.104			43.3				49.7			_			5.8		_	.3									
	2 0.0					+		25		+		5.0	05	•	+	0.	.44	1	+		0.0	69	,	\vdash	40.8				48.9			+	7.4				2	.9				
	-									+				+					+				+					\vdash				+				+						
													1																													

Re-Application of 50 ft

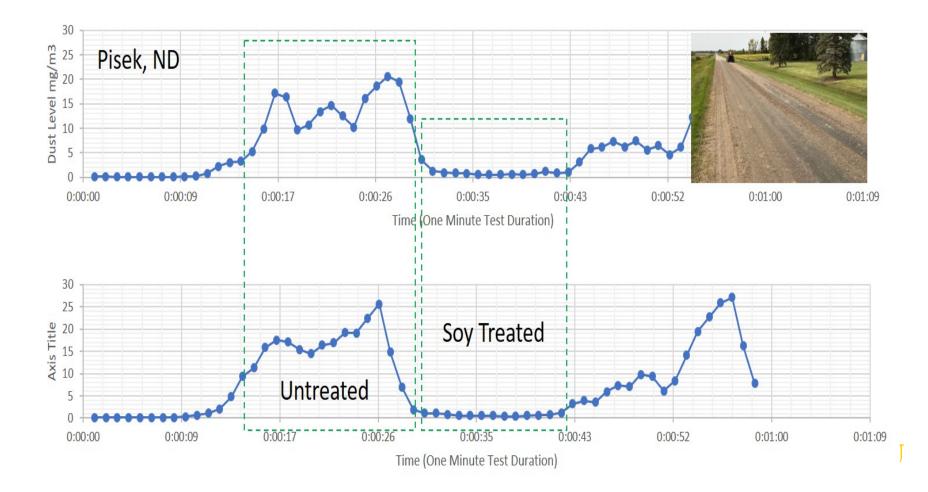

Samples of treated and untreated gravel where analyzed for grain size distribution.

The results indicated a reduction in fines for the treated gravel.

The product appears to be consolidating the fine clay and silt particles.

Vehicle Mounted Dust Meter Data

Pisek, ND Township Road



September 2nd

2 weeks later

Firmed up road base

Pisek, ND Test Site Significant Dust Reduction

Field Testing Summary

Each of the 20 test sites was an opportunity to learn and try new methods.

Many test sites were successful, but not all.

Adjustments were made to the formula to prevent foaming and separation.

The new formula has 4 times the oil content for better dust control.

More tests are planned for next month in Texas and California.

Expanded Markets Beyond Roads

- Gravel quarries and mining operations
- Fertilizer plants
- Grain elevators and other Ag facilities
- Horse riding arenas
- Dog parks
- National parks and protected areas
- Almond orchards
- Driveways
- Trucking lots
- Cement recycling

Manufacturing and Distribution

BioBlend Renewables is working with several manufacturers now.

The product will be sold this spring as **EPIC-EL** dust suppressant.

They are working with regional distributors and blenders to make the material available to counties, townships and property owners in various packaging options (pails, totes, tanker).

RAP Rejuvenation

Past RAP Research

RAP Binder Extraction

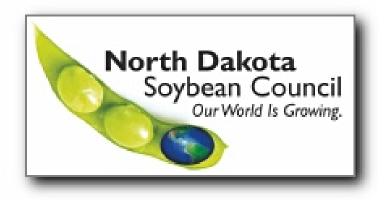
Our lab results showed that when treating RAP with 10% soy/asphalt binder, the cold temperature properties can be restored while increasing the compressive strength.

Compression Testing of Rejuvenated RAP

Future RAP Trials How can we make more use of RAP?

Utilize soy treated RAP for shoulder construction Instead of gravel

Base Stabilization Temporary Roads Driveways


Contact Information Questions or Sales Inquiries

James.Bahr@ndsu.edu

Todd.Allison@Bioblend.com

Acknowledgements Thank You for Your Financial Support!

